
CS106A Handout 30

Winter 2012-2013 March 6, 2013

Practice Second Midterm Exam #2
Problem One: Isograms (15 Points)

An isogram is a word that contains no repeated letters. For example, the word “computer” is an
isogram because each letter in the word appears exactly once, but the word “banana” is not
because 'a' and 'n' appear three times each. “Isogram” is itself an isogram, but “isograms” is not
because there are two copies of 's'.

There are many long isograms in English; for example, “uncopyrightable” and “computerizably.”
Your job is to write a method that, given a list of all the words in the English language, finds out
what the longest isogram actually is. Write a method

private String longestIsogram(ArrayList<String> allWords)

that accepts as input a ArrayList<String> containing all words in English (stored in
lower-case) and returns the longest isogram in the list. If multiple words are tied as the longest
isogram, feel free to return any one of them.

private String longestIsogram(ArrayList<String> allWords) {

2 / 6

Problem Two: Jackson Pollock (25 Points)

In this problem, you'll build a program that draws artwork in the style of the abstract expressionist
painter Jackson Pollock. Pollock created paintings by laying the canvas down on the floor of his
studio, then throwing paint of different colors onto it. The resulting paintings contain a mishmash of
colors that are artistically and aesthetically interesting.

Your task is to write a program that simulates randomly-thrown droplets of colored paint landing on a
canvas. Below is a screenshot of this program:

As soon as the program starts up, it begins drawing randomly-positioned circles on the canvas, each of
which represents a drop of paint. The center of each circle is chosen as a random point inside the
canvas, so the entire circle won't necessarily fit inside the window. In order to watch the art evolve
over time, you should pause for PAUSE_TIME milliseconds after each drop of paint. Each circle's color
should be chosen at random.

The radius of each circle should be determined by the value of a JSlider at the bottom of the window.
The slider should range between the values MIN_RADIUS and MAX_RADIUS, and its default value should
be DEFAULT_RADIUS. This slider should have a label to its left that reads “Droplet radius:” so that users
understand what it controls.

If the user clicks the Fill White button, then the display should be filled with a solid white color,
representing what would happen if you covered the canvas in a complete coat of white paint. The Fill

Black button is similar, except that it will fill the canvas with black paint.

Write your implementation on the next page, and feel free to tear out this sheet as a reference.

import /* ...lots of things... */

public class JacksonPollock extends GraphicsProgram {

 /** Amount of time to pause between droplets, in milliseconds. */

 private static final double PAUSE_TIME = 1.0;

 /** Minimum, maximum, and default radius of each drop of paint. */

 private static final int MIN_RADIUS = 3;

 private static final int MAX_RADIUS = 20;

 private static final int DEFAULT_RADIUS = 7;

3 / 6

Problem Three: Kerning (25 Points)

Although we've used GLabel extensively in this class, we never discussed how the computer actually
displays text. Internally, the computer maintains a set of images representing what each character looks
like. To display text on the screen, the computer lays out these images side-by-side. For example, to
display the string “VAT,” the computer begins with a set of images for the letters V, A, and T, then
places them side-by-side to form the string. This is shown here:

V A T → VAT
Unfortunately, this approach to laying out text will distort certain strings. For example, consider the
following rendition of the string “THE VATICAN:”

THE VATICAN
Notice how the V, A, and T in “VATICAN” appear to be spaced out more than the T, I, and C. The
reason for this is that the images for the letters V, A, and T have a lot of whitespace in them. When the
images for the letters are placed next to one another, this whitespace adds up and spaces the letters
farther apart than they should be.

To correct for this, the computer typically overlaps the images for certain pairs of letters to reduce
whitespace. For example, if we slightly overlap the images for V and A and the images for A and T, we
get this rendering of the word VAT:

VAT
The amount that the images of two letters overlap is called the kern, and the process of overlapping
letters this way is called kerning. Kerning can make text much more aesthetically pleasing. Compare
the above rendition of “THE VATICAN,” which had no kerning, to this one, which has been kerned:

THE VATICAN
Notice how there is less blank space between the V, A, and T in VATICAN.

Your task in this problem is to write a method that will accept as input images of two letters, then will
kern the images by some specified amount. For example, here is the sample output of this method on
the letters V and A with several different kerns; the vertical bar in the outputs marks the end of the V
image:

4 / 6

For simplicity, and to avoid some of the complexities of GImage, we will represent the images of letters
as two-dimensional arrays of booleans indicating for each pixel in the image whether the pixel is white
(false) or black (true). As an example, the letter A might be represented as follows:

{
 { false, false, false, false, true, false, false, false, false },
 { false, false, false, false, true, false, false, false, false },
 { false, false, false, true, false, true, false, false, false },
 { false, false, false, true, false, true, false, false, false },
 { false, false, true, false, false, false, true, false, false },
 { false, false, true, false, false, false, true, false, false },
 { false, true, true, true, true, true, true, true, false },
 { false, true, false, false, false, false, false, true, false },
 { false, true, false, false, false, false, false, true, false },
 { true, true, true, false, false, false, true, true, true }
}

Write a method

private boolean[][] kernLetters(boolean[][] first, boolean[][] second, int kern)

that accepts as input two boolean arrays representing images of letters, along with an amount to
overlap the two images, then returns a new boolean array representing the image formed by kerning
the two letters by the given amount. You can assume that the two images have the same height, though
they might not have the same width. You can also assume that the amount to kern the letters is
nonnegative and is smaller than the widths of either image.

As shown in the sample outputs at the top of this page, the resulting image should be no wider than
necessary. If the kern is zero, the width of the resulting image should be the width of the two individual
images put together. As the kern increases, the width of the result image should decrease.

Write your solution on the next page, and feel free to tear out this page and the previous as a reference.

Kern 0

Kern 1

Kern 2

5 / 6

Problem Four: Finding Celebrities (15 Points)

In the social network that you implemented in the FacePamphlet assignment, friendships were mutual:
if person A was a friend of person B, then person B was a friend of person A. However, other personal
relationships are not mutual. For example, the relationship “knows” might only go one way; if person
A knows person B, person B might not know person A. We can represent who knows who as a graph:
each node represents a person, and each edge from person A to person B represents that person A knows
person B.

Let's call a person a celebrity if at least half of the people in a social network know that person. For
example, consider this graph:

Angela

Brett

Caitlin

Devney

Here, Angela is a celebrity because 3 people know her (Brett, Caitlin, and Devney), and Devney is a
celebrity because two people know her (namely, Angela and Brett). Caitlin is not a celebrity, since only
one person knows her (Brett), and Brett is not a celebrity since no one knows him (though he somehow
knows everyone else.)

Write a method

private ArrayList<String> findCelebrities(Map<String, List<String>> graph)

that accepts as input a Map<String, List<String>> representing the graph of who knows who, then
returns an ArrayList<String> containing all the celebrities in the graph. You can assume that each
person in the social network is a key in the map, even if they don't know anyone else (in which case
their List<String> will be empty).

6 / 6

Problem Five: I'm Feeling Lucky (20 Points)

If you'll recall from lecture, the PageRank algorithm assigns a score to each page on the web. The
higher a site's PageRank, the more important the page. In our lecture example, we used PageRank to
find the fifty most important pages on Wikipedia. Using PageRank to build a search engine requires a
few more steps.

Here is a simplification of the algorithm that Google uses to perform searches:

1. First, Google compiles a list of all URLs for pages that contain the search query. These are
URLs for pages likely to be relevant. All other URLs are ignored.

2. Next, Google filters this list of URLs by removing all URLs on a known blacklist (which
usually contains malicious sites that steal personal information). This leaves a set of relevant
URLs for reasonable sites.

3. Finally, Google sorts these URLs in descending order of their PageRank and displays the result.

In this problem, your job is to implement the following method, which returns the URL of the
highest-rated page that Google would display for a search query:

private String imFeelingLucky(String searchQuery,

Map<String, String> textOfPages,

Set<String> blacklistedURLs,

Map<String, Double> pageRank)

Here, the parameters are as follows:

• searchQuery is the user's search query.

• textOfPages is a Map<String, String> that stores all pages on the web. Each key in the map
is a URL, and the value is the full text of the page with that URL.

• blacklistedURLs is a Set<String> of URLs that have been blacklisted from appearing as a
search result.

• pageRank is a Map<String, Double> from URLs to the PageRank score of the page with that
URL. All PageRank scores are positive.

For this problem, you should check to see if the given search query appears on a page by checking,
case-insensitively, if the search string appears verbatim anywhere in the page's text. For example, the
phrase “cute cat” will match on a page with the phrase “CUTE CAT” on it. However, if you search for
“cute cat” on a page whose text is “the cat was cute,” that page won't get added to the candidate set,
since the exact string “cute cat” doesn't appear anywhere on the page. This is perfectly fine.

If no pages can be returned – either because no pages contain the given search query, or because all the
search results are blacklisted – your method should return null as a sentinel. If multiple pages are tied
as the highest-rated page, then your method can return any one of them.

Write your answer on the next page, and feel free to tear out this page as a reference.

